Postnatal development attunes olfactory bulb mitral cells to high-frequency signaling.
نویسندگان
چکیده
Mitral cells (MCs) are a major class of principal neurons in the vertebrate olfactory bulb, conveying odor-evoked activity from the peripheral sensory neurons to olfactory cortex. Previous work has described the development of MC morphology and connectivity during the first few weeks of postnatal development. However, little is known about the postnatal development of MC intrinsic biophysical properties. To understand stimulus encoding in the developing olfactory bulb, we have therefore examined the development of MC intrinsic biophysical properties in acute slices from postnatal day (P)7-P35 mice. Across development, we observed systematic changes in passive membrane properties and action potential waveforms consistent with a developmental increase in sodium and potassium conductances. We further observed developmental decreases in hyperpolarization-evoked membrane potential sag and firing regularity, extending recent links between MC sag heterogeneity and firing patterns. We then applied a novel combination of statistical analyses to examine how the evolution of these intrinsic biophysical properties specifically influenced the representation of fluctuating stimuli by MCs. We found that immature MCs responded to frozen fluctuating stimuli with lower firing rates, lower spike-time reliability, and lower between-cell spike-time correlations than more mature MCs. Analysis of spike-triggered averages revealed that these changes in spike timing were driven by a developmental shift from broad integration of inputs to more selective detection of coincident inputs. Consistent with this shift, generalized linear model fits to MC firing responses demonstrated an enhanced encoding of high-frequency stimulus features by mature MCs.
منابع مشابه
Postnatal Development Attunes Olfactory Bulb Mitral Cells to High Frequency Signaling Abbreviated Title Postnatal Development of Mitral Cell Intrinsic Properties Authors and Affiliations
TITLE 1 Postnatal development attunes olfactory bulb mitral cells to high frequency signaling 2 3 ABBREVIATED TITLE 4 Postnatal development of mitral cell intrinsic properties 5 6 AUTHORS AND AFFILIATIONS 7 Yiyi Yu, Shawn D. Burton, Shreejoy J. Tripathy, Nathaniel N. Urban 8 9 Department of Biomedical Engineering, Center for the Neural Basis of Cognition, and Department of 10 Biological Science...
متن کاملPresynaptic muscarinic receptors enhance glutamate release at the mitral/tufted to granule cell dendrodendritic synapse in the rat main olfactory bulb.
The mammalian olfactory bulb receives multiple modulatory inputs, including a cholinergic input from the basal forebrain. Understanding the functional roles played by the cholinergic input requires an understanding of the cellular mechanisms it modulates. In an in vitro olfactory bulb slice preparation we demonstrate cholinergic muscarinic modulation of glutamate release onto granule cells that...
متن کاملExpression of neurexin ligands, the neuroligins and the neurexophilins, in the developing and adult rodent olfactory bulb.
The neurexins are a large family of neuronal cell-surface proteins believed to be involved in intercellular signalling and the formation of intercellular junctions. To begin to assess the role of these proteins in the olfactory bulb, we describe here the expression patterns of their transmembrane and secreted ligands, the neuroligins and neurexophilins, during both embryonic and postnatal devel...
متن کاملDisynaptic amplification of metabotropic glutamate receptor 1 responses in the olfactory bulb.
Sensory systems often respond to rapid stimuli with high frequency and fidelity, as perhaps best exemplified in the auditory system. Fast synaptic responses are fundamental requirements to achieve this task. The importance of speed is less clear in the olfactory system. Moreover, olfactory bulb output mitral cells respond to a single stimulation of the sensory afferents with unusually long EPSP...
متن کاملInfluence of Olfactory Epithelium on Mitral/Tufted Cell Dendritic Outgrowth
Stereotypical connections between olfactory sensory neuron axons and mitral cell dendrites in the olfactory bulb establish the first synaptic relay for olfactory perception. While mechanisms of olfactory sensory axon targeting are reported, molecular regulation of mitral cell dendritic growth and refinement are unclear. During embryonic development, mitral cell dendritic distribution overlaps w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 114 5 شماره
صفحات -
تاریخ انتشار 2015